
Networked self-adaptive systems:
an opportunity for con�guring in the large

J-Ph. Diguet, L. Ye, Y. Eustache, J. Crennes, P. Bomel, G. Gogniat, J. Vidal, F. De Lamotte
Lab-STICC, CNRS / Université Européenne de Bretagne, UBS, Lorient, France

Abstract— Self-adaptivity is a solution to give decision
intelligence to embedded systems in order to dynamically
adapt HW / SW architectures to environment variations, data
changes and user requirements according for instance to
energy ef�ciency. In our approach, this choice is done at
run-time and based on a set of embedded con�gurations.
This choice offers fast recon�guration but can also mean a
restricted con�guration space regarding multiple application
systems. However usual network capabilities can enlarge
this con�guration space, so we propose a solution based
on a hierarchy of con�guration servers from which con�g-
uration, based on prede�ned architecture models, can be
downloaded. In this paper we present a combination of two
techniques to propose a global con�guration management.

Keywords: Self-adaptivity, network, recon�gurable architectures

1. Introduction
The key argument for recon�gurable architecture is prob-

ably ”obtaining a more effective architecture by means of
specialization”. This idea is not new if we refer to Estrin
paper in 1963 [1], where it was already described as such,
however we are now reaching borders, where it can become
an on-chip reality. Many multiprocessor, heterogeneous and
con�gurable machines have already been developed in the
90's, they were for instance based on transputers, DSP and
FPGAs. Obviously, things have changed with the integration
progress on a single chip providing fast communication
capabilities that were the main limits of previous attempts.
The second aspect of evolution is the possibility to access,
at run-time, to con�guration memories and consequently to
recon�gure architectures dynamically. Combined with the
�rst goal of recon�gurable computing, it enables to consider
the question of hardware specialization as one new dimen-
sion of programming. Thus, as it is today for compilation
and scheduling, the management of con�gurations may also
result from a balance between static (design time) and
dynamic (run-time) decisions.

If we look back again in the past, Von Neumann brought
the concept of instruction stream in the 40's, then Harvard
architecture has been proposed in order to parallelize both
streams. Finally in the 60's, the concept of the cache memory
has been introduced to speed up stream outputs.

A con�guration stream as speci�ed in Fig.1 can now be
considered as the third kind of stream in the context of

recon�gurable architectures. Consequently, this new stream
should now go with data and instruction ones and must be
also speed up with a cache hierarchy considering voluminous
�les but moderate update frequencies.

On the application side of embedded systems, we can
observe the same evolution in terms of complexity. Multiple
and heterogeneous applications can share resources and
stress hardware in different ways such as typical networking,
signal/image processing, encryption functions. In case of
personal devices, 3D graphics, display and GUI can be
added. An OS can then become a necessity for hardware
abstraction and resource allocation.

Both architecture and application evolutions lead to highly
dynamic and data or context dependent behaviors of embed-
ded systems. In these changing conditions, the problem of
optimization, regarding for instance energy ef�ciency, can
hardly be handled without any con�guration considerations.

Finally, any design methodology targeting embedded sys-
tems is strongly constrained by development cost. The use
of IPs and standard API are tracks to reduce the effort cost,
this option must also be considered in the domain of recon-
�gurable architectures. This approach makes sense in the
domain of mass market products and ambient intelligence,
based on standard set of application and basic functions.

In this context, self-adaptivity applied on well-de�ned
architecture models, is a promising way to solve the ques-
tion of optimization at run-time. The �rst condition is the
availability of dynamically recon�gurable architectures. We
can reasonably make the assumption that such architectures,
which already exist, will be more ef�cient in a near future
in terms of power and recon�guration time. The second
condition is decision capability.

Given this situation and the assumption that a majority
of embedded systems will be somehow connected to a
network, we propose in this paper an overview of a global
approach for the design of self-adaptive systems targeting
effective architectures according to applications demands.
The methodology is �rst locally based on a combination of
static and dynamic con�guration decisions for both hardware
and software aspects, the objective is to get a trade-off
between decision complexity and con�guration storage cost.
Secondly, the idea is to increase the local con�guration
space by means of a shared and distributed hierarchy of
con�guration caches. The approach is based on two as-
sumptions. First some generic architecture models have been

previously de�ned and secondly applications are based on an
intensive use of an evolutionary library of API and standard
coprocessors or IPs. Section 2 presents the global approach.
Section 3 illustrates local self-adaptivity with a smartcam
demonstrator and section 4 introduces global-self adaptivity
with a MP3 example. Finally we conclude.

!"#$%&'(%")

*)+(,-.(%")
/(,0'#

!")12-,'(%")
/(,0'#

3'('4/(,0'#
3'('

5,".0++%)2

*)+(,-.(%")
5,".0++%)2

!")12-,'(%")
5,".0++%)2

3'('4/(,0'#

!")(,"&4/%2)'&

674!"#$")0)(

Fig. 1: R-MPSoC: Data, Instruction, Con�guration Streams

2. Global Methodology
The basic problem addressed is the partitioning of a set

of tasks over a given architecture model, the aim is to
specialize at run-time the architecture according to appli-
cation needs. As for the domain of embedded systems, we
consider today an architecture meta-model based on a master
processor (MP) and a set of hardware accelerators (IPs) or
slave processors (SP) connected to a hierarchy of bus as
depicted in Fig.10. Depending on the application domain and
performances requirements, different models can be selected.

The main idea is to reduce the design space to be explored
at run-time in order to introduce short and low cost decision
overheads. Thus, the approach consists �rst in loading a
reduced pre-de�ned set of con�gurations used for fast local
adaptations according to context and data variations. Then,
this set can be updated at run-time through a network
connection if better con�gurations are necessary or if new
applications, requiring new con�gurations, are started.

Therefore, we have adopted a methodology that can now
be decomposed in �ve steps. The �rst one is the speci�cation
step during which the designer should think in terms of self-
adaptivity at functional level. The second one consists in an
of�ine design space exploration (DSE) step, which provides
a set of possible con�gurations to be selected at run-time by
the next two online steps. These two online steps address
algorithmic and architectural con�gurations implemented
by local and global con�guration managers respectively.
Finally the last step is also handled online by the global
manager, that can update available con�gurations in the local
con�guration memory. It is based on a hierarchy of caches
(Fig.2) and has two objectives. The �rst one is to extend
the accessible con�guration space for a given application
regarding on-chip / on-board space storage restrictions. The
second one is the update of software and hardware versions.

!"#$%&'()*()&
+!,-&

./0()/(0&
1%"2$%&
'()*()3&

+!4-&

!""#

!"$#

!"%#!"
#$

%
&

'()
*+

&
&

,&

!$$#

!"#$%&' !"#$% ''''
'''(

)*
+

,*
%

,'-
"%

./0
"%

*1
2'

-'&

!&"#

'()*+),+#
-.*/(01*#- 2#

#!"#$%&'()*%"#+!),-.+++
#/%.()(,-0+ 13#'()*+),+####
#-.*/(01*45##

!$"#

.#
/0

%
(&

'()
*+

&

!"
#$

%
&

'()
*+

&
&

1&

!"#$%&'&()*+*),-.")/0'0#01, 2&&
,+&& 344"56%&!%"47#8#905$50:&)(5%60%8&/9%*545*#05)6&
1+& 344"56%&;%/5<67!9#*%&=>9")(#05)6&?367*@59&A&367B)#(8&C)645<D(#05)6&!9#*%E&
F+& 36"56%&G"<)(50@H5*&C)645<D(#05)6&?I)*#"&.#6#<%(E&
J+& 36"56%&G(*@50%*0D(%&C)645<D(#05)6&?K")B#"&.#6#<%(E&
L+& 36"56%&C)645<D(#05)6&M98#0%&?N5%(#(*@:&)4&C)645<D(#05)6&C#*@%/2&*@59O&B)#(8O&6%0P)(QE&&&&&

2"304$*156&7#"-
863/*)"3)56"-.0'"#9 &

Fig. 2: Global Framework

3. Local Self-adaptivity
3.1 Introduction

Actually, another challenging issue is the embedding de-
cision within embedded systems to perform hardware (HW)
/ software (SW) partitioning at run-time. Today, there is no
really ef�cient solution, which can be applied to the design
of general embedded systems. This is precisely the point we
are addressing in this section.

We consider an architecture meta-model, which �ts with
a large set of embedded systems. Then, considering the
smartcam example, we select a model based on a GPP with
dedicated accelerators that can be dynamically con�gured
(M01 on Fig.10). The GPP implements a RTOS managing a
set of tasks. Tasks communicate through messages passing
for synchronization and shared memories for data, and they
can have various possible implementations in HW and / or
in SW, which corresponds to different cost / performance
trade-offs.

3.2 Objectives and contributions
Considering the previously described architectural model,

the main objective of this work is the implementation
of a con�guration manager with run-time decision and
con�guration control capabilities. We focus our work on
the following issues, which are the main relevant points from
a research perspective:
1) Separation between decisions at design and at run-time;
2) Transparent use of various HW and SW implementations;
3) Separation between application-speci�c and application-
independent con�guration decisions;
4) Online decision: algorithms and implementation;
5) Recon�guration control, transition reliability;
6) System stability, avoidance of con�guration oscillations;
7) Negligible self-adaptativity overhead (power, area, time).

Our contributions focus on these items, with the objective
to remain, as much as possible, independent from hardware

platforms since we consider that current dynamically re-
con�gurable devices and tools (e.g. Xilinx), are temporary
solutions that may strongly evolve in the near future. We
propose a design methodology regarding the issue 1) and we
introduce the concepts of UCCI (uni�ed con�guration and
control interface) and LR (legal representant) to cope with
issue 2). Question 3) is solved by means of a hierarchy of
local and global con�guration managers (LCM/GCM). Our
choice for addressing problem 4), regarding self-adaptivity,
is based on a close-loop approach and a Borda vote. We use
data-granularity checking and con�guration ID broadcasting
to deal with problem 4). A PI (proportional integrator)
regulator, enhanced with LMS (least mean square) observer,
is implemented as a solution to question 5). Conditions on
control parameters have been derived to guide designers
regarding issue 6). Finally, point 7) has been our constant
optimization criteria. In this paper we give an overview,
however some details can be found in [2] regarding points
1), 3), 5), 6) and 7); details of items 2) and 4) can be found
in [3] and [4] respectively.

3.3 Related work
In this section, we focus on the previously quoted contri-

butions. They are not related to recon�gurable architectures
in general, but to question of con�guration decision from a
global perspective including hardware and software aspects.
A lot of work has been produced in the domain of adaptive
architectures and different techniques have been introduced
for clock and voltage scaling [5], cache control [6] or
functional unit [7] allocation. However, these approachescan
be classi�ed in the category of local con�gurations based
on speci�c aspects whereas our aim is to provide a global
solution to the question of con�guration management. In [8],
the association between algorithmic and architectural views
is relevant for H-264 implementation, however the hardware
controller remains speci�c and local. Recently, we observed
some �rst proposals about recon�guration decisions in em-
bedded systems. In [9] a three-level manager is presented,
this manager and the associated design space exploration
are speci�c and dedicated to cognitive radio applications
based on blind waveform detection. A single decision layer
is described and simulated with Matlab in [10]; it is based
on an evolutionary algorithm and limited to a single task
application and very simple architecture transformations.
Our approach has been driven by the separation between
application speci�c and system level decisions, by the choice
of a generic methodology and an architecture compliant
with energy-limited embedded systems. Finally, from a SW
point of view, feedback control has been introduced in the
area of soft RTOS to handle the uncertainty of worst case
execution time (WCET). In [11], authors present a complete
model for feedback control real-time scheduling. In [12], a
relevant two-step approach is proposed. However, this kind
of technique does not �t for embedded low cost systems and

!!"

!"#$%&'()&*++*($&*,+-+

#$%&'()*+",)-%"

#$%&'()*+",)-%"

!"#$%&'()&*++*($&*,+.+
.*+/*--0()*+"

/+

/+

#$%&'()*+",)-%"

1*2%3"4"53%0" !"#$%&'()&*++*($&*,+0+

567*3)(8-/" 9+&%3(0)+(:"03%0"

.;<"= +

123+0+

/+

/+

/+

/+

/+

/+
/+

/+

/+
/+

/+
/+

/+

/+ /+

/+
/+

/+
/+

/+
/+

/+

123+-+
>??6)+%"
.0+@)@0(%"
A%6%&()*+"

/+
/+

/+
/+ /+

/+

/+

Fig. 3: Con�guration Space

recon�gurable hardware, but the approach of system stability
remains interesting.

In conclusion, even if dynamically recon�gurable coarse-
grain architectures have been already proposed, the decision
issue for the whole system, including inherent transitions
between con�gurations and stability conditions are usually
ignored in the domain of embedded systems.

3.4 Of�ine steps: speci�cation and DSE
Self-adaptivity aware speci�cation First, we consider

that self-adaptativity starts at application design and software
designers are asked to specify the conditions under which an
algorithmic con�guration must be selected or not by means
of application metrics that must be clearly speci�ed and
computed if necessary. In practice, the software designer
will follow a methodology in which he will specify lists
of algorithmic con�gurations, and transition rules based
on metrics. We believe that our approach is a good way
to impose an adaptivity-oriented design discipline on the
designer. Moreover, this is not a real design constraint since
this information is usually known by designers at design
time, but not explicitly speci�ed.

HW/SW design space exploration As previously
claimed, characteristics of solutions (e.g. power, perfor-
mances, area) change with data, environment and archi-
tecture hazards. Thus, a selection of promising candidates
must be done of�ine while considering an uncertainty space
around each solution as depicted in Fig.3.

3.5 Online steps: con�guration management
Separation of concernsThe aim is to implement con�g-

uration management for online algorithmic and architectural
adaptation. Fig.3 presents the con�guration space, where a
point means a con�guration identi�er (CID), and a plan
corresponds to an algorithmic choice. Thus, a move within
a plan is an algorithmic recon�guration (e.g. CID1!
CID2) and a move between plans means an architectural
recon�guration (e.g. CID2! CID3).

The challenge, when it comes to the con�guration decision
of embedded systems, is to �nd a low cost, but ef�cient
solution. Our solution, regarding these objectives, relies on
a couple of local (LCM) and global (GCM) managers,
that can be implemented as software or hardware tasks.
In the smartcam demonstrator (§3.8), GCM and LCM are
implemented as SW tasks using some wired instructions
(coprocessors).

LCM: algorithmic adaptation Basically, the local con-
�guration manager (LCM) is a set of rules speci�ed with
simple API by the software designer and ef�ciently im-
plemented by means of masks, e.g.if F f mi g true then
apply Maskm [] to Conf iguration list whereMaskm is
an array of bits with a length equal to the number of possible
con�gurations, such asMaskm [i] = 1 if CID i is valid
and0 otherwise. A rule is a simple logic function based on
metrics issued from tasks.

GCM: architecture adaptation The global con�guration
manager (GCM) is in charge of architectural implementation
decisions. It receives data from sensors (gas gauge, cpu
load from the OS, LCM requirements) and from estimators
when no measures are available. The GCM decides the
new system con�guration according to user requirements
(e.g. QoS, Power, Performance references) and con�guration
solutions issued from the LCM design space restrictions. The
decision process is detailed in section 3.7.

3.6 Con�guration management
ConceptThis point is not the main concern of this paper,

however to make it easier to understand we brie�y give an
overview of the main concepts. The recon�guration of the
system at run-time raises two questions. The �rst one is
the synchronization of tasks after a recon�guration has been
performed, the second one is the problem of interfaces. Both
aspects are solved in the context of RTOS, more details can
be found in [4].

UCCI interfaces and Legal representativeWe consider
applications speci�ed as acyclic task graphs and an architec-
tural model based on message passing and shared memories.
This means that a task indicates to its successors, through
mailbox or queuebox mechanisms, the address of data in a
shared memory protected with Semaphore or Mutex. From a
communication point of view, the interface must be unique
no matter the implementation of tasks. For this reason, we
have developed a Uni�ed Con�guration and Communication
Interface (UCCI). It is implemented by means of API when
the task is running on the processor and as a HDL code
container when the task is mapped on a hardware accelerator.
The interface is in charge of synchronization mechanisms
(e.g. mailbox), transfer of metrics to the LCM, con�guration
mechanism and memory accesses (DMA in case of HW
implementation). When a task is moving from SW to HW, it
still remains alive in the RTOS as a sleeping task in charge
of RTOS / HW accelerator communications, this concept

is called the Legal Representative (LR). Communications
between HW accelerators are direct and, therefore, do not
solicitate the RTOS (RTOS communication services are
distributed in such a case since implemented in HW UCCI).

Con�guration control mechanisms We solve the syn-
chronization issue by means of diffusion mechanisms. Our
method reuses existing communication channels, which can
be direct for HW to HW communications or based on RTOS
services for HW/SW and SW/SW communications. We,
therefore, have developed the following strategy. Firstly, the
con�guration manager, namely the LCM, sends the CID to
all source tasks through a multi-cast diffusion. Secondly,the
CID is propagated gradually from the source to the sink tasks
over data channels, after granularity control to avoid data
starving and inconsistency. With such diffusion principles,
we guarantee that all tasks will be con�gured starting with
the source tasks.

3.7 Con�guration Decision

Introduction We propose an original approach based on
a close-loop model that consists in considering a recon�g-
urable embedded system as a process to be controlled by
means of con�gurations choices. In the following we present
the model we have adopted and relative issues concerning
stability and convergence.

Close-loop con�guration Control Control theory
methodology �rst requires settling an analytical model
close to the real system to be controlled. In our case, the
system is composed of a recon�gurable SoC running a set
of tasks, that can be implemented with various versions on
different HW/SW resources, and control, estimation and
con�guration tasks. Our model, depicted in Fig.4 is based
on three elements. S is the controlled system composed of
con�guration managers, a task set and some sensors that
provide access to the controlled magnitude y(t).

R is the control function. O is the system observer, which
provides estimates for the next time slot. The observer
implements a system model that is updated when measures
are available.

u(t) is the user reference, depending on priorities a
designer can consider. It can be, for instance, application
QoS constraint that will be compared to the QoS value
provided by the LCM related to the application. It could
also be a lifetime threshold that will be compared to a
value derived by the GCM from battery level and power
consumption or even a time constant that will be compared
to real execution times provided by the OS.

Thus:

e(t) = u(t) � ŷ(t)

is the difference between the reference and the observer
prediction output, namely the expected average power con-
sumption of the system in the next time slot based on the

value provided by the battery controller.

ŷ(t + 1) = a0y(t) + a1y(t � 1) + a2y(t � 2)

produces an estimate of the next average power consump-
tion.

!"#$%"

&"

'"

(#)'*%"+"

,#)%"-#)%".#)%"

/"

'"

0-12342"
!"#$%&'()*+,(--$./01**

23$456"7$*+8&01*9:&*+!;<0**

567"

8672"

!-9-4-1:- *=**
%9:&*
%23$45*6"7$*
%!"#$-"7$*

(#)%"

6319;<=""""
>-:;2;31"

?@2A2"

7-)4;:2"

6BC2""
0-D-:);31"

6BC"

0E"631)43DD->"0(2)-F"

Fig. 4: Generic Close Loop System

Observor designThe observer regularly updates coef�-
cients f ai g, this is a model that estimates the system be-
havior. The aim is �rstly to predict the magnitude evolution
in order to anticipate the right decision for recon�guration.
Secondly, sensor acquisition introduces delay and power
overheads when a model-based approach enables rapid es-
timates of the system behavior even when new measures
are not available. Considering the algorithm complexity for
adaptation and estimation and the �lter length we have opted
for a 3-tap LMS for the observer implementation.

Con�guration decision The aim of the decision is to
select, regarding a regulated error, the best con�guration
from the con�guration table, which is regularly updated with
real measures. Our approach has been driven by a tradeoff
between ef�ciency and complexity compliant with embedded
systems.

Model. The problem can be formalized as follows, given
i the considered magnitude (Power, QoS, T) andj the
CID, T ab(i; j) is the value stored in the con�guration table.
X (i; j jk) is the estimated controlled error for magnitudei
in con�guration j , knowing value for current con�guration
k. For instance, ifi represents power, the following linear
approximation is used:

X (i; j jk) = X (i; k)
T ab(i; k)
T ab(i; j)

T h(i) is a possible tolerance regarding reference. All mag-
nitudes are de�ned in such a way that a con�guration meets
the constraints ifV (i; j) > 0.

V(i; j) = U(i) + T h(i) � (T ab(i; j) + X (i; j jk)) (1)

Decision Algorithm.The main steps of the decision algo-
rithm are given in Fig.5. The frequency of metric transfers is

controlled by the con�guration period. It means that metrics
are transmitted to the LCM afterNe consecutive executions
of the application, it meansk:Ne executions of the task ifk
is the number of task iterations within the application period.

Secondly, the GCM is also pending on a mail box,
waiting for data issued from LCMs regarding algorithmic
con�gurations, meaning that a �rst decision reduction is
obtained through LCM selection. Then, a second restric-
tion is introduced based on apaying off delay tk during
which costly hardware recon�guration is not authorized.
Tk corresponds to the minimum delay required to accept
the recon�guration overhead compared to expected bene�ts.
Tk = max

�
TR
GT

; E R
GE

�
. Where TR is the recon�guration

delay, GT the performance gain between the new and the
previous con�guration,ER the energy required for a recon-
�guration and GE the energy gain. Finally, all considered
magnitudes are assessed for the �nal selection regarding a
given priority order (e.g. T, QoS, P).

The algorithm runs as follows. First, note that only the �rst
constraint is regulated (e.g. T) and considered for selection.
Secondly, other constraints are considered when more than
one solution respect the �rst one (namelyV (1; j) > 0), oth-
erwise the candidate providing the smallest error is selected
regarding only the �rst constraint. Then a vote based on
Borda's method [13] is processed among survivor solutions,
each magnitude sorts remaining con�gurations and gives
a vote corresponding to the rank. A negative vote means
that the constraint is not respected. The closest solution
respecting the constraint gets the highest vote. Different
weights can be assigned to the different magnitudes. If
multiple candidates obtain the same score then a Hamming
distance with current con�guration is used to select minimal
SW ! HW moves.

!"#$%&'()&*(+,

"+,-(./0&*(+,$12&34$04)/34)$*+
56$! 56+0$76$! $56

843+,-(./0&*(+,1

9+ :41

;+0)&$<+*4$=&14)$+,$6>(?@A

!"#$#%

5+0*$%>(?@A$>)4304&1(,.$+0)40A

8&,B$=&14)$C4(.D*
&''+3&*(+,E$6>(?@A

F+0$(GHIIJ

84)/34$"+,-(.I$52&34$*+$%>H?@AKL

M-$$! $@$!$%>H?@A$K$L

5+0*$%>H?@A$>)4304&1(,.$+0)40A

54'43*$H1*$1+'/*(+,

9+ :41

Fig. 5: Decision algorithm

!"#$%&'()*+,&*-'(.

!/.#.0+')-'(.1.2-34*-'(.

!5.#.67819,:1!;+%);'3<.

!=#>:?%&*.@4:%33-(8.

!A#.6<4B*-7%.
!;+%);'3<.

!C#.D+4E%.6&FG.!CH#.>:?%&*.I'*-'(J..
@I9.I'<%33-(8.

K'9.L'EB,*4*-'(.

!M#.2-)B34N.

!"#$"%$&'()&*#+,)((
-*,(%&(-"%"(.!
"!!#!$%&'()*!
"!!+,'-!
"!!./*0)0/1!

O!! .2034)!
"!!$%&5!64-7'!
"!!$%5!+,'-!
"!!$%&5!./*0)0/1!
"!!89-3'!1/0*'!

!CC#.@LI..
9E4+*.L4E.

!"#$ %&'()$*"'+(,$

-$."/+0,$

-$123)4(,$

!P#.Q',(<%<.Q'R.

!S#.T+47-*N.L%(*%+.

5,"67()0$*"'+(,$

89)7$

:",'('"+$

Fig. 6: Application �ow

3.8 Object tracking test-bed
The best way to prove the ef�ciency of our approach,

in the absence of equivalent and available approaches to
compare with, is the validation of our method on a real-life
application, in which self-adaptivity makes sense. Hereafter
we present an FPGA-based smart camera implementing an
object tracking application. In the following, we present how
the different design steps of our methodology are applied.

a) Application speci�cation, metric selectionThe appli-
cation is composed of 10 tasks (T1 ... T10) described in Fig.6,
which can be implemented in HW or in SW, these tasks are
controlled by a LCM implemented as a SW task. The dotted
arrows from tasks to the LCM ”tracking” indicate metrics
to be used for algorithmic con�guration. For instance, the
number of isolated white points after tasks 2, 3 and 4,
the numbers of iterations of object reconstructions (T10) or
the number of detected objects (T5). The selection of the
task metrics is based on the application-designer experience
and simulation analysis. For instance, we present in Fig.7
the evolution ofT4 and T5 execution times according to
T4 metrics: the number of reconstruction iterations and the
number of isolated white pixels.

b) Environment sensorsThe architecture is implemented
on a NIOS soft core within an Altera Stratix II 2S60ES
FPGA board with a VGA daughter board. In addition we
have plugged in a camera and a battery gauge, providing
power consumption features, on FPGA GPIOs. The image
acquisition rate is controlled by the GCM and follows up the
application rate to avoid useless image storage. The extended
RTOS is built around� Cos II and provides the information
about task and application execution time. The QoS sensor is
realized by TaskT10, that provides the LCM with a metric,
which is the difference between object position based on
labeling results and an estimation of object positions based
on a LMS algorithm. A value close to 0, but lower than the
reference (e.g. 10%) means a very high tracking quality that
can be relaxed if the application speed is reduced. However,
a value higher than the reference means that the application
rate must be increased with a faster con�guration.

c) Design Space ExplorationThe extended RTOS is
built with new previously explained capabilities for com-
munication, synchronization and con�guration of HW and
SW tasks. Hardware task modules are connected to the
Avalon bus and clocked only when used. A co-processor has
been added as a coarse grain instruction acceded through
processor registers for an ef�cient implementation of the
LMS and PI regulator. It is also used for application QoS
computation (error between prediction and object position).
Initially a generic C code of the application was available
and various hardware modules were designed after a short
design space analysis. In this case study, the algorithmic
con�guration is the complete application with a �xed thresh-
old (T9 off), and a gravity center is approximated as the
center of the bounded box (T7). After this stage, we have
limited the search space to 22 signi�cant con�gurations
with the following algorithmic choices: 1) Deep sleep mode:
T3;4;5;6;7 are inactive; 2) Sleep mode:T4;5;6;7 are inactive;
3) ReconstructionT4: on or inactive; 4) �lter inactive or
based on two or four images; 5)T9: on or inactive (�xed
threshold).

 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07
 9e+07
 1e+08

 1.1e+08
 1.2e+08

 0 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

T
as

k
4

(c
yc

le
s)

Number of iterations, Task 4

 2.55e+06

 2.6e+06

 2.65e+06

 2.7e+06

 2.75e+06

 2.8e+06

 2.85e+06

 2.9e+06

 0 500 1000 1500 2000 2500 3000

E
xe

cu
tio

n
T

im
e

T
as

k
5

(c
yc

le
s)

Number of white pixels after Task 4

Fig. 7: T4 metric selection based on designer experience

d) UCCI encapsulationHardware and software tasks are
implemented using UCCI services. Due to length constraint,
code details cannot be presented here, but the implementa-
tion can be shortly summarized as follows. A software task is
enhanced with three additional stages based on API library.
The �rst one tests if the application is implemented in HW
and, if it is true, pends on its control mailbox as thelegal
representativeof the HW task. If the CID corresponds to a
software version, then task parameters are updated according
to the selected algorithmic con�guration. The second stage
is implemented after the standard SW task code, this is the
metric computation based on task variables. Finally, the third
stage is the emission of metric towards the LCM mailbox
queues.
A hardware task is encapsulated within a HDL container,
including communication and con�guration supports. The
generic shell is adapted with the appropriated number of
output and input ports and mailboxes for the control of com-
munication with the OS and other tasks. Data transfers are
based on shared memory, dedicated registers are speci�ed
within the UCCI shell to indicate their base address.

e) LCM implementation The next step is the LCM
speci�cation, in this case a single LCM is required and a

software version is chosen. Let's �rst consider I/Os. The
right number of mailbox queue instances is de�ned for the
capture of metrics. The number of output mailbox instances
is equal to the number of sink tasks, which in this case is one.
The second point relies on the LCM strategies. Actually, it
is currently implemented as rules de�ned by the application
designer according to simulation results. The object tracking
application requires six rules. For instance, rule 1 relieson
the selection of �xed or adaptive threshold computation and
the number of frames inT1 according to the number of
isolated white points afterT2 andT4.

Note that the frame acquisition (T1) is not a periodic task,
it is launched only when a frame is required and so is directly
dependent on other task con�gurations. This means that the
acquisition rate is controlled and regulated by the GCM.

f) GCM implementation In this section, we focus on
the main GCM parameters, which are the PI regulator
coef�cients: ki , kp and the LMS observer gainkL . Various
experiments have been conducted with the smart camera
prototype implemented on FPGA. The GCM is implemented
as a software task, so the choice of the coef�cients results
from a simple variable initialization within the associated C
code.
The following sections show how a software designer can
rapidly decide on the correct control parameters as a trade
off between response time and accuracy. This method is
equivalent to the way it can be conducted in usual regulated
systems.

g) PI and LMS parameter speci�cation Fig.8 presents
some pulse, step and slope responses for different choices
of R (f kp; ki g) and LMS parameters (kL). In this case
the regulated magnitude is the execution time, theX axis
is the time represented as the image number. For each
parameter choicef kp, ki g, we can observe the reference, the
execution time (y(t)) and difference between the reference
and the regulated error (x(t)); the con�guration selection is
given on a separate �gure. The increase of the integration
factor ki slows down the adaptation, while the increase of
the proportional factor ofkp increases the regulator gain.
Since stability constraints are respected, the system returns
to the initial con�guration in all cases, but the delay and
the number of transitional con�gurations vary according
to parameter choices. The LMS implementation is based
on a co-processor, namely a custom instruction, which is
initialized with software instructions. The reduction of the
LMS coef�cient (kL) slows down the update of the linear
model and we observe a better adaptation with a reduced
number of recon�gurations. Both used values for (kL) are
compliant with the LMS stability constraints. These example
show, how the software designer can set the right parameters
according to application requirements.

3.9 Train tracking application
a) ScenarioTo illustrate the self-adaptivity abilities of the

-50

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40

Ex
ec

ut
io

n
Ti

m
e

Image Number

Execution Time
Reference

Reference - Error

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

Co
nf

ig
ur

at
io

ns

Image Number

Configurations

a) Pulse Response (R): kp = 0 ; 25 ; k i = 0 ; 75

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
Ti

m
e

Image Number

Execution Time
Reference

Reference - Error

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

C
on

fig
ur

at
io

ns

Image Number

Configurations

b) Step response (R): kp = 0 ; 5 ; k i = 0 ; 5

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

T
em

ps
 d

'e
xé

cu
tio

n

Image Number

Reference
Execution Time

Reference - RegulatedError

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

Image Number

Reference
Execution Time

Execution PredictedTime
Reference - RegulatedError

c) Slope Response: No LMS With LMS:kL = 2 � 21

Fig. 8: Exec. time regulation

prototype, we propose tracking an electric toy train with a
scenario punctuated with various events inducing different
con�guration decisions. Fig.9 shows the con�guration deci-
sions along the execution of this scenario. In this scenario,
the regulated magnitude is no longer the execution time but
the QoS, namely the tracking accuracy. It means that Borda's
vote is applied to power and execution time values.
After some experiments and simulations, as is usually done
in real automation implementation, we have �nally set the
following regulator parameters:f kp = 0 ; 25;ki = 0 ; 25g,
which provide a good tradeoff between stability and re-
activity. In the same way, the LMS gain has been set to
kL = 2 � 21. The adaptation rate is set to one, which means
that a new con�guration is evaluated after each application
iteration.
The QoS reference, namely the tracking maximum error, is
set to 10 % and reduced to 2% within the critical area. This
scenario is based on a succession of events that highlight
self-adaptation capabilities. After several images without any
movement, the train enters the scene at low speed for two
circuit rounds. Then, during the stretch of the track, the train
speeds up for two others rounds, stops and goes backwards.
It then enters a Critical Zone, runs into and leaves the area.
Finally, the train continues its path at low speed.

b) Result analysisThe CPU time devoted to LCM and
GCM task (0.33% in a pure SW solution) and the HW
overhead due to the co-processor (1%) are negligible in such
an applicative context where recon�gurable architectures
make sense.
With different algorithm and architectural con�gurations,

we obtain tracking system performances. Tab.1 provides,
for different con�guration examples, performance values,
FPGA area ratio provided and power consumption measures
obtained with the battery gauge (TI Bq2084). Execution time
results correspond to a tracking process with a standard
input frame. Execution time variation is due �rst to system
architecture (e.g. cache miss, bus collision...) and secondly to
data features. Tab.7 shows examples of such data-dependent
performances that can justify the generalization of self-
adaptive systems in the future. The reconstruction task, for
instance, is a recursive task depending on object complexity;
during each iteration, execution time depends on the number
of white pixels. In the same way, erosion and labeling
execution times depend on the number of white pixels and
the number of objects, as well as the number of white pixels
and object complexity, respectively.

Some architecture con�gurations may involve signi�cant
time overheads (HW and SW tasks switch), however it is
also clear that hardware tasks may be considered when
computing parallelism is available and relevant speeding up
achievable. Such performances can be found in domains
such as image processing, encryption, 3D graphics, video
encoders. In our case study, for instance, we observe that
message passing represents a very low percentage of the
entire whole communication.

T1,2-T3-T4-T5-T6,7,8 all sw sw-hw-hw-sw-hw all hw

Avg. Exec. Time (cy.) 245.650.000 80.800.000 1.820.000

Frames / sec. 0,20 0,62 26

Area StratixII S60 19 % 59 % 92 %

Power 137 mW 228 mW 285 mW

Table 1: Design results with a 50 MHz clock

4. Global Self-Adaptivity
4.1 Introduction

Embedded systems require fast and low cost self-
adaptivity, we reach this objective by reducing the con�gu-
ration space based on a set of promising solutions around an
average con�guration. However such a solution may be too
limited if the variations of application conditions lead tovery
large con�guration space or if multiple complex applications
are running concurrently. For cost and technology reasons,
the answer cannot be limited to the increase of embedded
memories even if RAM and Flash resources enable to
store large amounts of con�guration �les. The question of
�rmware update is another important issue with a great
impact on development cost. However, most of embedded
systems can access to the network and so to huge and shared
con�guration (bitstream, binaries) repositories. Thus wecan
extend the available recon�guration space by means of
hierarchy of caches as depicted in Fig.2, which for instance
can be composed upper the con�guration memory of an

!"#
$%&'()#

*"+#
,-''.#

/012#
,-''.#

340)0(56#
54'5#

*7809",0):#
;'4:#6"+#,-''.#

<
=

'(>
#?

08
'#

@
"A

#
3"

9B
01

74
5)

0"
9,

#
C

#+
20

)'#
-0

=
'6

,#

D851'#978%'4#

!"#$!
%&&#&!

"#$!'!%&&#&!

Fig. 9: Self-Adaptivity scenario with LMS

on-board DDR memory, a local W/LAN server and some
Internet Servers providing new releases and applications.
Such an approach raises two additional questions. First,
architectures must be de�ned as instances of a registered
model, in order to classify con�gurations available to a
set of identical recon�gurable embedded systems. It also
means a new �exible programming model based on standard
interfaces and API compliant with the architecture model.
The second main point relies to the cache policy, namely
the way con�gurations are stored and updated at each level
of the hierarchy.

4.2 Networked recon�gurable systems
A lot of future applications, based on distributed embed-

ded systems, are expected in the domain of intelligent en-
vironment (smart cameras) or transportation (smart sensors)
and in the context of nomadic devices (software de�ned ra-
dio, computing). It means that wired and wireless local area
networks can be considered as an available solution. Given
this assumption, we have implemented different architectures
providing a networked-recon�guration service for Xilinx
FPGA. Note that the objective was to implement partial and
dynamic recon�guration directly from a remote and local
server. In other words, we bypass the DDR level of the cache

hierarchy when the requested con�guration is not available
on board. Previous work have considered such a network
approach, William and al. [14] have developed a� Clinux
device driver on top of ICAP, enabling bitstreams down-
loading. The system is based on a Microblaze implemented
on Virtex2p. As no measures are provided, estimations done
in a similar context, lead to a transfer speed ranging from
1.6 Mb/s to 3.2 Mb/s. Lagger et al. [15] also propose a
solution based on� Clinux for cryptographic application in
the context of pervasive applications, authors indicate data-
rate ranged from 240 Kb/s for HTTP and 480 Kb/s for
FTP. This shows that ”TCP +� Clinux” is very �exible
and widely accepted as a universal platform, however it
also means an overhead that can be an issue in case of
real-time applications. Not strictly dedicated to DPR, the
XAPP433 [16] application note from Xilinx, describes a
HTTP server performing 4Mb/s built around a Microblaze
implemented on a Virtex4 FX12 running at 100 MHz and
based on the lwIP [17] protocol stack and the Xilinx XMK
OS. We have implemented different stand-alone solutions
tested with different kind of bitstreams, A1 is a customized
IP protocol implemented on a PowerPC, A2 is an enhanced
version based on A1 and improved with a DMA [18].
Considering the use of standard protocols and very low
error rates observed in usual W/LAN implementations, we
have also implemented solutions based on UDP [19] in case
of wired (A3) and wireless (A4) networks. Table 2 shows
the throughputs and memory footprint we obtained. These
results and recent experiences based on Virtex V indicate
that we can expect to reach the maximum LAN bandwidth
with FPGA, namely 100Mb/s and more in a near future.
We can conclude that LAN capacities will �x L1 cache
bandwidth. Regarding L0 in the case of FPGA, it is bounded
by ICAP bandwidth that can theoretically raise up to 3,2Gb/s
on Virtex V, which corresponds to a DDR range.

Lagger Williams Xilinx A1 (ad A2 (A1 + A3 (wired A4 (Wi�

[15] [14] [16] hoc IP) DMA) UDP) UDP)

Throughput

(Mb/s) 1.7 3.2 4 40 80 60 30

Memory

(bytes) > 1M > 1M < 100K < 100K < 100K 200K 200K

Table 2: Throughputs and memory footprints

4.3 Modeling and standards
If we consider now that an embedded recon�gurable

system can ef�ciently download a set of con�gurations from
global servers, it means that open source programs extended
to hardware components can provide designers with in�nite
possibilities of (re)con�guration and upgrade, it also means
very exciting future prospects. Depending on technologies
and devices families, different solutions can be proposed.If
we consider for instance R-MPSoC based on Xilinx FPGA

and Microblaze cores, we can propose a meta-model from
which can be derived various architecture models. In this
context, Model Driven Engineering tools can usefully help
designers to generate codes and compilation or synthesis
scripts automatically, in [20] we present such an approach,
based on MARTE/UML meta-model.

Fig.10 shows how a meta-model is progressively spe-
cialized in order to provide a given recon�gurable archi-
tecture. We start from a meta-model (M01) of a general
architecture composed of a manager processor controlling
some slave processors with a given number of co-processors,
and various other components such as shared memories,
IP and peripherals. Then an instance of the selected model
is speci�ed by the designer. In this case M11 corresponds
to the previous smartcam architecture, M10 is the model
we adopted for the second example for audio coding. It is
composed of a manager processor and two slave processors
that can then be dynamically con�gured by means of two co-
processors. Thus, servers of con�guration can host database
where con�gurations are identi�ed and classi�ed according
to instances of architecture models.

The programming model is another important issue for
the design of applications over a given model of recon�g-
urable architectures. Our approach, depicted in Fig.11, is
an extension of the model we developed for self-adaptivity,
where the granularity level is a task (namely a thread).
Each application is composed of a set of tasks and a
local con�guration manager (algorithmic con�gurations),a
descriptor �le provides the con�guration manager (GCM)
with meta-data including the list of used standard functions.
A unique GCM, implemented on the master processor (MP),
decides the global architectural con�guration, it is also
in charge of con�guration downloading through the cache
hierarchy. Each task is speci�ed with a UCCI interface,
which is in charge of con�guration test, synchronization and
communications mapping. A task can be mapped as software
task on a slave with or without speci�c co-processors or as
hardware task as a speci�c IP. As explained in introduction,
we observe that applications in embedded systems share a
large set of common basic functions, we believe that these
functions can be called through common API adapted to
the different architecture models. The hardware or software
implementation of these functions don't need be redesigned
but could available on con�guration servers.

4.4 MP3 Case study
To illustrate the global con�guration concept, we have

built networked self-adaptive architectures based on avail-
able dynamically con�gurable processors on FPGA. The
XPSoC-V2 architecture, for instance, is based on model M11
in Fig.10 and implements, on a Xilinx ML410 board (Virtex4
FX60), two microblazes. The �rst one (MP) is the manager
and the second one (SP) is a slave with con�gurable co-
processors connected to FSL interfaces. MP runs a petalinux

!"#$%&'#&("')*'&+,*-.'/)*0)
1)

234)

536)

7)
64) 1)

7))
68)

239)1)3::) *4) *")1)

!"#$%&'#&("')*'&+,*-.'/)*0)!"#$%&'#&("')*'&+,*-.'/);*04<)

=)=)=)
!"#$%&'#&("')*-.'/);*40<)

!"#$%&'#&("')*-.'/);*44<)
*3) 534)

7))
44)

>&$) *4) *?)

7))
4?)

53?)

7))
?4)

7))
??)

@@A)B5C)

D
E

E
F

2G
>

)
D

G
F

2G
>

)

7-8HI("'.)*-.'/))

7-,3"-#'JJ-")
!##'/'"+&-"J)
)7+#$'.)@C)

3"-#'JJ)K)@) 3"-#'JJ)K)@) 3"-#'JJ)K)@)

7-8HIL)*+8+I'")
;*+J&'")3"-#'JJ<)

A,*35-7)
*44)5&+&(J)

!"##$%&'('
)*%+&,-".*%'/01$2$*%2'

!MM/%#+N-8)@'J#"%M&-"J);@<)O)
!32)P-")5&+8.+".)E(8#N-8J)

34$%0'5#01$"6$7".*%'

3%6$%0'5#01$"6$7".*%'''

G'&Q-"6)

7-8HI("+N-8)
5'"R'")

*3) 234)

>&$) *4) *?)@@A)B5C)

23?) 23S) 23T)

7))
04)

536)

7)
64) 1)

7))
68)

*3)

7)
04) 1)

7))
08)

*3) 234)

>&$) *4) *?)@@A)B5C)

23?) 23S) 23T)

7))
04)

*3) 534)

E))
+)

>&$) *4) *?)

E)
U)

53?)

E)
U)

E)
#)

@@A)B5C)

!"##$% !"#&$%

!"##$%

!"#&$%

Fig. 10: Global model views

!""#$%&'$()*!*+,,-*

./0
1&

2*
.3

*

45*416%0$"'(0*7.&68*90&"/:*;,<:*%()=$9>0&'$()*.&?#1@*

!"#$ %&'$ ()*$

&"+$

,$$
+#$

,$$
++$

!"+$ --.$

,$$
##$

,$$
#+$

&"#$

/"$
0,/$$
1,/$

+,,-*

./0
1&

2*
.A

*

!B-5,C3*
!B-5*%33*

+,,-*

!B-*

./0
1&

2*
.C

* !B-*

!B-5,CC*

Fig. 11: Heterogenous mapping based on standard interfaces

[21] operating system. In this case study, SP runs an MP3
decoder application. Two types of coprocessors can be
downloaded from remote con�guration server, a IMDCT
coprocessor and a MUL16 coprocessor. Table 3 presents
performances and area for the different versions.

Software HW-MUL16 HW-IMDCT

Slice used for coprocessor 0 161/ 25280 482/25280

DSP used for coprocessor 0 4/128 4/128

LUT used for coprocessor 0 86/50560 521/50560

Execution TimeS 307.2 232.9 (24%) 167.7 (45%)

Table 3: Mp3 decoding on XPSoC-V2

5. Conclusion
In this paper we have presented a global methodology

for the design of self-adaptive systems. It is �rst based on
a close-loop approach for deciding, at run-time, among a
�nite set of con�gurations the best one according to user
references. Then we extend this solution by implementing
a hierarchy of remote con�guration servers providing an
access to a huge con�guration space. Finally, we propose

to open the design of standard con�gurable multiprocessor
architectures, by means of model speci�cation that enables
to a large set of hardware and software engineers to share
applications and standard function designs.

References
[1] G.Estrin, B.Bussell, R.Turn, and J.Bibb, “Parallel processing in a

restructurable computer system,”IEEE Transactions on Electronic
Computers, no. 6, pp. 747–755, Dec. 1963.

[2] Y.Eustache and J-Ph.Diguet, “Speci�cation and OS-based implemen-
tation of self-adaptive, hardware software embedded systems,” in
6th Int. Conf. Hardware/software Codesign and System Synthesis
(CODES-ISSS), Atlanta, USA, 2008.

[3] Y.Eustache, J-Ph.Diguet, and M. Khodary, “RTOS-based hardware
software communications and con�guration management in the con-
text of a smart camera,” inProc. of the Int. Conf. on Engineering of
Recon�gurable Systems & Algorithms (ERSA), June 2006.

[4] Y.Eustache and J-Ph.Diguet, “Recon�guration management in the
context of RTOS-based HW/SW embedded systems,special issue
on Operating System Support for Embedded Real-Time Applications,”
EURASIP Jour. of Embedded Systems (JES), Jan. 2008.

[5] J.L.Wong, G.Qu, and M.Potkonjak, “An on-line approach for power
minimization in qos sensitive systems,” inASP-DAC, 2003.

[6] D.H.Albonesi, “Selective cache ways: On-demand cache resource
allocation,” in 32nd Annual Int. Symp. on Microarchitecture, 1999.

[7] R.Maro, Y.Bai, and R.I.Bahar, “Dynamically recon�guring processor
resources to reduce power consumption in high-performanceproces-
sors,” in Work. on Power-Aware Computer Systems, 2000.

[8] J.Liang, A.Laffely, S.Srinivasan, and R.Tessier, “An architecture and
compiler for scalable on-chip communication,” IEEE Trans. onVLSI
Systems, vol. 12, no. 7, pp. 711–726, July 2004.

[9] L.Goddard, C.Moy, and J.Palicot, “From a con�guration management
to a cognitive radio management system of SDR systems,” inCROWN-
COM, Greece, June 2006.

[10] P.Kaufmann and M.Platzner, “Towards self-adaptive embedded sys-
tems: multi-objective hardware solution,” inInt. Work. on Applied
Recon�gurable Computing (ARC), London, UK, Mar. 2008.

[11] C.Lu, J.Stankovic, G.Tao, and S.Son, “Feedback control real-time
scheduling: Framework, modeling and algorithm,”special issue of
RT Systems Journal on Control-Theoretic Approaches to Real-Time
Computing, vol. 23, no. 1/2, pp. 85–126, july/september 2002.

[12] B.Li and K.Nahrstedt, “A control-based middleware framework for
quality of service adaptation,”IEEE Journal on Selected Areas in
Communication, Sept. 1999.

[13] J-C.De Borda, “Mémoire sur les élections au scrutin (in french),”
Histoire de l'Académie Royale des Sciences, Paris, 1781.

[14] J.Williams and N.Bergmann, “Embedded linux as a platform for
dynamically self-recon�guring systems-on-chip,” inThe Int. Conf. on
Engineering of Recon�gurable Systems and Algorithms (ERSA), Las
Vegas, USA, 2004.

[15] A.Lagger, A.Upegui, E.Sanchez, and I.Gonzalez, “Self-recon�gurable
pervasive platform for cryptographic application,” inInt. Conf. on
Field Programmable Logic and Applications (FPL), Aug. 2006.

[16] Xilinx, “Xapp433. web server design using microblaze soft processor,”
October 2006.

[17] A. Dunkels, “lwip,” Computer and Networks Architectures, Swedish
Institute of Computer Science, http://www.sics.se/ãdam/lwip/, 2001.

[18] P.Bomel, J.Crenne, L.Ye, G.Gogniat, and J-Ph.Diguet,“Ultra-fast
downloading of partial bitstreams through ethernet,” inProc. of the
Int. Conf. on Architecture of Computing Systems (ARCS), ser. Lecture
Notes in Computer Science, Delft, The Netherlands, March 2009.

[19] J.Crenne, P.Bomel, G.Gogniat, and J-Ph.Diguet, “UDP partial bit-
streams diffusion through WLAN,” inInt. Conf. on Design, Archi. for
Signal, Image Proc. (DASIP), Sophia Antipolis, France, Sept. 2009.

[20] G.Vidal, F. Lamotte, G.Gogniat, P.Soulard, and J-Ph.Diguet, “A co-
design approach for embedded system modeling and code generation
with uml and marte,” inDATE, Nice, France, Apr. 2009.

[21] Petalinux. [Online]. Available: http://developer.petalogix.com/

